Energy Balance Analysis of Biodiesel and Biogas from the Microalgae: *Haematococcus pluvialis* and *Nannochloropsis* 

Luis F. Razon and Raymond R. Tan Department of Chemical Engineering De La Salle University



# What is biodiesel?

- A fuel for diesel engines derived from vegetable oils, consisting of the alkyl esters formed from fatty acids and an alcohol.
- Biodiesel offers many advantages:
  - A renewable resource
  - Up to a 20% mixture, requires no change in existing engines
  - Small changes required in the distribution infrastructure
  - Biodegradable
  - Soot is reduced
  - Frequently non-toxic
  - Better lubrication properties
  - Considerable experience in its manufacture
    - The Philippines, Indonesia, Brazil, some US states now require that diesel fuel contain biodiesel



#### Why is alternative feedstock needed?

- Cost
  - Biodiesel is more expensive than petrodiesel
  - 60-85% of the cost is from the feedstock
- Food versus Fuel
  - Traditional feedstocks like soy, palm, coconut and cottonseed are food.
  - Might result in an increase in edible oil prices
- Increased planting of vegetable oil crops may result in worse greenhouse effect because forest land is converted to agricultural land
- Increased NO<sub>x</sub> emission seems to be related to the feedstock
- Global vegetable oil production ≈ 18% global transport diesel demand



#### Phototrophic Microalgae

- Microscopic photosynthetic plants that can live in salt or fresh water
- Have a higher photon conversion efficiency than terrestrial plants--increased biomass yields per hectare
- Can be harvested batch-wise nearly all-year-round
- Can utilize salt and waste water streams
- Can couple CO<sub>2</sub>-neutral fuel production with CO<sub>2</sub> sequestration.



# Phototrophic Microalgae (great technical challenges)

- Oil yield, purity and fatty acid profile are affected by: nutrient availability, light intensity, pH, salinity, presence of other microorganisms, etc.
- Consume large amounts of energy during production, harvest and processing
  - Photobioreactor or Raceway pond
  - Fertilizer
  - Water removal



#### Energy Balance (Life-Cycle Assessment)

- Complete accounting for all of the energy requirements from "pond-to-pump"
  - Direct energy inputs like electricity and heat
  - Indirect energy inputs like energy to produce chemicals
- Life-cycle data from ecoinvent<sup>®</sup> database
- Functional unit: 1 kg of biodiesel = 37 MJ
  - Non-lipid components converted to biogas (by-product)
- Net Energy Ratio

NER = 
$$\frac{\text{Energy Output}}{\text{Energy Input}} = 1 + \frac{\text{Net Energy}}{\text{Energy Demand}}$$

# Haematococcus pluvialis

- Fresh-water, photosynthetic microalga
- Fatty acid profile that can provide a good quality biodiesel
- Commonly cultured for astaxanthin, a very high-value coloring agent
  - high-value product which could indirectly subsidize the lower-value products and viceversa.
- Accumulation of astaxanthin is accompanied by accumulation of fatty acids and oleic acid in particular.





#### Haematococcus process



De La Salle University

#### Energy Balance Results (1 kg biodiesel and 2.6 m<sup>3</sup> biogas)

| Process                             | Amount  | Energy Equivalent |
|-------------------------------------|---------|-------------------|
|                                     |         | (AU)              |
| Photokioreactor                     |         |                   |
| KNO3                                | 0.032kg | 29                |
| $P_2O_5$                            | 0.018kg | 09                |
| Electricity                         |         | 56.5              |
| Raceway Fond                        |         |                   |
| KNO <sub>3</sub>                    | 034kg   | 30                |
| $\mathbf{P}_2 \mathbf{O}_3$         | 0.10 kg | 4.7               |
| Electricity                         |         | 26.6              |
| Microfilter.                        |         |                   |
| Allocation from Thickener Underflow |         | 99.7              |
| Electricity                         |         | 22                |
| Credit.for "fresh" water            |         | -6.0              |
| Bead Mill                           |         |                   |
| Electricity                         |         | 70.1              |
| Transesterification                 |         |                   |
| Allocation for Oil                  |         | 5.7               |
| Methanol                            | 0.21kg  | 149               |
| NaOH                                | 0.002kg | 0.2               |
| NaOCH                               | 0.01kg  | 13                |
| Electricity                         |         | 0.1               |
| Heat.                               |         | 2.8               |
| Credit for Glycerin                 |         | -20.9             |
| Total for Methyl Esters             |         | 43                |
|                                     |         | 5417 A. MIN       |

| Dia Courter                        |       |
|------------------------------------|-------|
| pinka cauatana                     |       |
| Allocation for Depleted Algal Cake | 182.6 |
| Allocation for Thickener Overflow  | 22.4  |
| Electricity                        | 33    |
| Treatment (Sewage)                 | 32.7  |
| Credit for Annonium Compounds      | -1.0  |
| Total for Biogas                   | 218   |

- Net Energy Ratio (NER) > 1 for biodiesel, NER << 1 for biogas
- Total NER = 0.4
- Largest contributors are the electricity for the bead mill and the photobioreactor; fertilizer

😻 De La Salle University

# **Process Alternatives**

- Use of primary treated wastewater
  - Removes fertilizer use
  - -NER = 0.48
- Recycling thickener overflow to pond
  - eliminates the PBR and fertilizer for it
  - -NER = 0.47
- Increase biomass yield to 625 g/m<sup>3</sup> and oil content to 35%
  - NER = 0.50



### Nannochloropsis



- Grows in salt water
  - No need for fresh water
  - Requires special equipment
- High oil content
- High biomass productivity
- High amounts of unsaturated fatty acids
  - May require further processing to make the biodiesel comply with standards



#### Nannochloropsis process



#### Energy Balance Results (1 kg biodiesel and 1.5 m<sup>3</sup> biogas)

| Process                             | Amound  | Energy Equivalent |
|-------------------------------------|---------|-------------------|
|                                     |         | ക്ര               |
| Raceway Fond                        |         |                   |
| KNO.                                | 0.17hg  | 155               |
| P <sub>2</sub> O <sub>3</sub>       | 0.10hg  | 4.8               |
| NAOCI                               | 023hg   | 4.1               |
| Electricity                         |         | 151               |
| Thickener                           |         |                   |
| AL(\$0.):                           | 391g    | 356               |
| HC1 (L5%)                           | 09g     | (nil)             |
| Algal Biomass Bryer                 |         |                   |
| Allocation from Thickener Underflow |         | 909               |
| Heatfrom CHPplant                   |         | 319.0             |
| 0il Extraction                      |         |                   |
| Hexane                              | 0.003kg | 02                |
| Electricity                         |         | 203               |
| Transesterification                 |         |                   |
| Allocation for Oil                  |         | 122.8             |
| Methanol                            | 0.21 kg | 149               |
| NaOH                                | 0.002kg | 02                |
| NaOCH                               | 0.01 kg | 13                |
| Electricity                         |         | 0.1               |
| Heat                                |         | 2.8               |
| Credit.for Glyterin                 |         | -209              |
| Total for Meilyl Esters             |         | 142               |

| Biogra Generation                  |       |       |     |
|------------------------------------|-------|-------|-----|
| Allocation from thick energy endow |       | 101   |     |
| Allocation for depleted algal cake |       | 335.6 |     |
| Electricity                        |       | 19    |     |
| Treatment (Sewage)                 | 277 m | 1903  |     |
| Credit for Annonim Compounds       |       | -111  |     |
| Total for Biogas                   |       |       | 527 |

- Net Energy Ratio (NER) << 1 for biodiesel, NER << 1 for biogas
- Total NER = 0.09
- Largest contributors are the heat for the dryer; sewage treatment



# **Process Alternatives**

- Use of Nannochloropsis strains with higher productivity and oil content
  - **-** F&M-M26
    - 25 g/m<sup>2</sup>/day, 29.6% oil
    - NER = 0.13
  - F&M-M28
    - 20.4 g/m<sup>2</sup>/day, 35.7% oil
    - NER = 0.12
- Recycle the thickener overflow to the pond
  - NER = 0.12





# **Conclusions and Recommendations**

- NER for the 2 systems studied are << 1
  - Not feasible as purely energy systems; palm oil NER = 3.5; jatropha NER = 6-7.5
  - Consistent with other studies (Sander & Murthy; Lardon et al.)
  - Biomass yields assumed for *H. pluvialis* was already 62% of thermodynamic limit
  - Can still be used for other purposes:
    - Astaxanthin is the main product. Biodiesel and biogas are just by-products
    - GHG sequestration
- Harvest and post-harvest processes are large contributors to energy requirements
  - "Wet" extraction must be developed



# Acknowledgements

- 2<sup>nd</sup> GCOE for the invitation
- University Research Coordination Office of De La Salle University for sabbatical leave
- Pre Consultants by for the free license to SimaPro<sup>®</sup> and ecoinvent<sup>®</sup>.
- Mr. Long The Nam Doan for assistance.
- Dr. John Benneman for advice and suggestions
- De La Salle University Library

