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What 1s biodiesel?

e A tuel for diesel engines derived from vegetable oils,
consisting of the alkyl esters formed from fatty acids and
an alcohol.

e Biodiesel ofters many advantages:

A renewable resource

Up to a 209% muxture, requires no change mn existing engines
Small changes required in the distribution ifrastructure
Biodegradable

Soot 1s reduced

Frequently non-toxic

Better lubrication properties

Considerable experience 1 its manufacture

e The Philippines, Indonesia, Brazil, some US states now require that diesel
fuel contain biodiesel
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Why i1s alternative feedstock needed?

Cost
- Biodiesel 1s more expensive than petrodiesel
- 60-85% of the cost 1s from the feedstock
Food versus Fuel
- Traditional feedstocks like soy, palm, coconut and cottonseed are

food.
- Might result in an increase in edible o1l prices
Increased planting of vegetable o1l crops may result in

worse greenhouse eftect because forest land 1s converted to
agricultural land

Increased NO_ emission seems to be related to the
feedstock

Global vegetable o1l production = 18% global transport
diesel demand
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Phototrophic Microalgae

e Microscopic photosynthetic plants that can live 1n
salt or fresh water

 Have a higher photon conversion efficiency than
terrestrial plants—-increased biomass yields per
hectare

e Can be harvested batch-wise nearly all-year-round
e Can utilize salt and waste water streams

e Can couple COgyneutral fuel production with CO,
sequestration. b
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Phototrophic Microalgae

(great technical challenges)

e O1l yield, purity and fatty acid profile are
attected by: nutrient availability, light mtensity,
pH, saliity, presence of other
microorganisms, etc.

e Consume large amounts of energy during
production, harvest and processing

- Photobioreactor or Raceway pond

- Fertihizer !

- Water removal 1
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Energy Balance

(Life-Cycle Assessment)

e Complete accounting for all of the energy requirements
from “pond-to-pump”

- Direct energy inputs like electricity and heat

- Indirect energy mputs like energy to produce chemicals
e Life-cycle data from ecoinvent® database
e Functional unit: 1 kg of biodiesel = 37 M]

- Non-lipid components converted to biogas (by-product)
 Net Energy Ratio

Energy Output 14 Net Energy ’
Energy Input Energy Demand :

NER =
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Fresh-water, photosynthetic
microalga

Fatty acid profile that can provide
a good quality biodiesel

Commonly cultured for
astaxanthin, a very high-value
coloring agent

- high-value product which
could mdirectly subsidize the
lower-value products and vice-
versa.

Accumulation of astaxanthin 1s
accompanied by accumulation of
fatty acids and oleic acid in
particular.
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Haematococcus process
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Energy Balance Results

(1 kg biodiesel and 2.6 m?3 biogas)
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Process Alternatives

e Use of primary treated wastewater
- Removes fertilizer use
- NER =0.48
e Recycling thickener overtlow to pond

- elmminates the PBR and fertilizer for it

- NER =0.47
* Increase biomass yield to 625 g/m? and o1l content
to 35% I
- NER =0.50
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Nannochloropsis

e Grows 1n salt water
- No need for fresh water

- Requires special equipment

High o1l content

High biomass productivity

e High amounts of unsaturated

fatty acids

- May require further
processing to make the
brodiesel comply with
standards h

—gy
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Nannochloropsis process
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Energy Balance Results

(1 kg biodiesel and 1.5 m?3 biogas)
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Process Alternatives

e Use of Nannochloropsis strains with higher productivity
and o1l content

- F&M-M26
e 25 g/m?/day, 29.6% oil
e NER =0.13
- F&M-M28
¢ 20.4 g/m?/day, 35.7% oil
e NER =0.12

e Recycle the thickener overtlow to the pond

- NER =0.12
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Conclusions and Recommendations

e NER for the 2 systems studied are << 1

- Not feasible as purely energy systems; palm o1l NER = 3.5;
jatropha NER = 6-7.5

- Consistent with other studies (Sander & Murthy; Lardon et al.)
- Biomass yields assumed ftor H. pluvialis was already 62% of
thermodynamic limit
- Can stll be used for other purposes:
e Astaxanthin 1s the main product. Biodiesel and biogas are just
by-products
* GHG sequestration

* Harvest and post-harvest processes are large contributors to energy
requirements b

- “Wet” extraction must be developed [
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