Demonstration of Biofuel Production Technology from Non-Edible Biomass <u>Resources at AIST for Sustainable</u> Biomass-Asia Strategy

> Kinya Sakanishi Biomass Technology Research Center(BTRC), AIST, Hiroshima 739-0046, Japan

BTR

Research Bases of AIST

Political and Social Needs

Political Need;

- •Biomass Nippon Strategy (2002 & 2006 renewed)
- EPA : Japan-Malaysia(2006), -Thailand(2007), -Indonesia(2008)
- Japan-China-Korea Science&Technology Collaboration Ministry Meeting (2007)
- •East Asia(ASEAN+E3) Summit: Cebu Island Declaration(2007)
- Toya Lake Summit (2008) , COP15 (2009) =>=> 2020, 2050

Social Need and Impact;

- Mitigation of Global Warming
- Substitution of Fossil Fuels
- Activation of Agriculture
- Suppression of Desertification
- Demonstration of Sustainable Development Scenario

Potential of Biomass Energy in the World

Potential Collaboration Projects on Utilization of Non-Edible Biomass

BTRC ethanol production process (One-batch concept)

- → Requirement of pretreatment without separation of cellulose and hemicellulose fraction
- \rightarrow Requirement of cellulase and hemicellulase to hydrolyze both components
- \rightarrow Requirement of glucose- and xylose-fermenable recombinant yeast

Mini plant(0.2 t/batch)

(pretreatment process)

Coarse grinder (<3 mm)

(1) Coarse pulverizing processes :

Raw materials (wood chips or straw) are crushed and milled to under several mm.

Wet cutter-milling

Milled sample(<0.8 mm)

Small pilot plant (pretreatment 2)

(2) Hydrothermal process : The milled materials are softened by hot-compressed water.

Pressure cooker (Max temp. 180°C, Wet Max press. 1.0 Mpa) 3 Fine pulverizing processes :

Wet disc-milling

Disc-milled sample (5-7%w/v)

The softened materials are finely fibrillated to several microns by wet disc-milling. The milled sample (5-7% w/v) are centrifuged to make a dewatered cake (20% w/v).

Current approaches for cost effective nano-fibrilation

Enzymatic saccharification time (h)

BTRC

BTRC ethanol production process: Enzymatic hydrolysis process

☆ Development of cellulase-producing fungus, *Acremonium cellulolyticus*

- \rightarrow Analysis of cellulase and hemicellulase components
- \rightarrow Heterologous expression of hemicellulase in A. *cellulolyticus*
- \bigstar Development of hemicellulase-producing fungi to combine with A. *cellulolyticus*
- \bigstar On-site production of cellulase and hemicellulase using pretreated biomass

Necessity of hemicellulase supplements

Supplemental hemicellulase enzymes to Acremonium cellulase are required for higher sugar recoveries from hemicellulose.

Enzymatic hydrolysis of ball-milled Douglas-fir

Small pilot plant (Saccharification & Fermentation)

A Saccharification and fermentation processes:
 The pretreated materials are hydrolyzed (48-72 h) and then
 fermented (24 h) by fungal enzymes and yeast cells, respectively.
 The enzymes and yeast cells are produced on-site.

Enzyme production (400 L)

Saccharification& fermentation (2,000 L)

Yeast production (200 L)

Small pilot plant (Distillation)

5 Distillation and dehydration processes :
The fermentation liquor is directly distillated without separation of the residue.
Pure ethanol (99.5% v/v) is obtained by 2-nd distillation and dehydration processes.

Second distillation (90%v/v) & dehydration (99.5%v/v)

Future Needs for Alternative Transportation Fuel

Combined BTL by Bio- and Chemical- Conversion

Photograph of bench-scale BTL plant

Scrubber

Wood

Gasifier

Desulfurization tower CO₂ **removal tower**

Compressor & Gas holder

FT synthesis reactor

Liquid fuel

Research Target in Upgrading of Primary FT Products

R&D of hydrocracking/isomerization catalysts: *Solid catalyst preparation and in depth characterizaition of catalysts. *Hydrocarbon fuel analyses for elucidating the reaction mechanism. *High-pressure continuous flow reactors (micro, bench) operation. *Thermodynamic analyses the for hydrocarbon reactions and for the catalysts deactivation

BTL(Biomass to Liquid) Process Scheme; Biomass gasification with FT Synthesis via Hot Gas

Cleaning => <u>Design of "Mobile BTL Plant"</u>

Pressurized Gasification of biomass (1∼3MPa, ~900 °C)

FT Synthesis DME synthesis (1~3MPa, ~250 °C)

Biomass System Analysis and Simulation

Objectives;

- 1. To develop biomass system simulation technology, Ground database (DB) should be constructed.
- 2. To design economic feasible total system for biomass.

The simulator can be used for optimization, economic & environmental analysis.

How much CO₂ can Biofuel mitigate?

Project Scheme on Sustainable Asian

Biomass Strategy

Best Practice Scenario and System for Sustainable Biomass Utilization Models in East Asian Countries

Total Promotion of Biomass Asia Strategy Extensive Win-Win Collaboration in Asia International R&D Joint Projects on Biomass, Especially agriculture and engineering fields

Technology, IP, Human resources

Resources, Economical development, Technology transfer

Energy, Materials, CO_2 reduction : CDM \Rightarrow Sustainable Development

Estimated Biomass Yields as Main Product and Residues

(million tons)

Crops	Biomass	Thai-Land	Vietnam	Indonesia	Malaysia	Philippines
Oil Palm (Coconut Palm)	Main Product 33	1		13 (1)	16	(2)
	Factory Residue38	1 (1)		10 (8)	11	(7)
	Field Residue 71	2 (1)		26 (6)	31	(5)
Sugar- cane	Main Product 15	7	2	3		3
	Factory Residue44	21	6	8		9
	Field Residue 32	19	5	8		8
Cassava	Main Product 11	5	1	5		
	Factory Residue14	6	2	6		
	Field Residue 20	9	2	9		
Rice	Main Product 74	15	20	31		8
	Factory Residue34	7	9	14		4
	Field Residue 84	17	23	35		9
Timber (Wasted Trunk)	Main Product 18	2	1	8	6	1
	Factory Residue18	2	1	8	6	1
	Field Residue 32	1 (1)	1	6 (9)	4 (7)	(3)

for 2003 or 2004

Proposal Content (draft)

Resources

- 1. Hybrid Agricultural Refinery Model (ex. China) Corn, Rice, Wheat, Sugarcane, Cassava etc.
- 2. ASEAN Continental Model; <u>Rice & Sugar Energy Complex</u> <u>Model</u> (ex. Thailand, Viet Nam etc.)
- 3. ASEAN Islands Model; <u>Palm Oil Energy Complex</u> (Malaysia, Indonesia etc.)

Proposal of Efficient Recovery and Utilization Model of Agricultural Wastes

1. Sustainable Biomass-Refinery

Technology

- (1) Bio-Fuels
 - 1-1. Bio-ethanol
 - 1-2. Bio-diesel fuel(BDF)
- (2) Bio-chemicals

2. Evaluation & Design of Biomass Utilization System

- (1) Life cycle assessment(LCA)
- (2) Demonstration plant projects
- (3) Design of optimized local models
- 3. Research and Development for Sustainable Biomass Production

Ethanol Production from Palm Wastes

Collaborative Research for Palm Industry Complex

November, 2007 Joint Research Agreement (JRA) among University Putra (UPM) Malaysia, Kyushu Institute of Technology (KIT), and Biomass Technology Center (BTRC), AIST

April, 2008 Collaborative research on bioethanol production from palm residues by collaboration of UPM, KIT, and BTRC

November, 2008 Collaborative laboratory (Biomass Technology Centre) in UPM

Signing ceremony of JRA at UPM

Opening ceremony of Biomass Technology Center at UPM

Fruitful Collaborations Using Biomass

National Institute of dvanced Industrial Scienc and Technology **AIST**

Small- & Large-scale Biomass Utilization System !!

High efficiency and convenience

As small as possible

Industrial Utilization

High economical viability

Stable law material supply, High demand in product

BTRC

<u>Summary & Proposals for</u> <u>Effective Biomass Utilization</u>

1) Palm Energy&Chemicals Complex ;

- Combined production of bio-fules and bio-carbons by optimizing bio-conversion and thermochemical routes
- 2) Sugar and Rice Energy&Food&Chemicals Complex;
- Large-scale bio-ethanol production from agricultural wastes for simultaneous supply of food and bio-fuels
- 3) Wood Refinery Complex for Fuels and Chemicals;
 - Total multi-production system of timber, paper pulp, ethanol, and bio-chemicals including lignin-derivatives

"Green Biomass for Cool Earth"

Thank you very much for your attention !

